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SUMMARY
Time-series data are rarely purely linear or nonlinear and often contain both these patterns. In this article, hybrid models are developed by combining 
linear Kalman Filter (KF) and Nonlinear Least Squares Support Vector Machine (LSSVM) methodologies for time-series forecasting. Particle Swarm 
Optimization (PSO), which is a very efficient population-based stochastic optimization technique is employed to estimate the hyper-parameters of 
these models. The relevant computer program is written in MATLAB function (m file) and MATLAB software package is used for data analysis. As 
an illustration, developed hybrid models are applied to all-India monthly rainfall time-series data. The superiority of these models over individual 
linear KF and nonlinear LSSVM methodologies is demonstrated for the data under consideration using Root Mean Square Error (RMSE) and Mean 
Absolute Percent Error (MAPE) criteria.
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1.	 INTRODUCTION
Well-known parametric Box-Jenkins 

Autoregressive Integrated Moving Average (ARIMA) 
and its variant the Seasonal ARIMA (SARIMA) 
models have virtually dominated analysis of univariate 
time-series data since 1930s (Narayanan et al., 2013). 
However, a limitation of these models is that they are 
“linear”. Further, quite often it is noticed that there is no 
appropriate parametric form to describe satisfactorily 
the given time-series data. To this end, the area of 
“Nonparametric Nonlinear Time-Series Modelling” 
has been growing rapidly during the last three decades 
or so. In this class, Artificial Neural Network (ANN) 
methodology trained Backpropagation algorithm 
has been extensively used (Chattopadhyay and 
Chattopadhyay, 2013). However, the main drawbacks 
of this methodology are that the model generally 
overfits data and that the solution gets trapped in local 
minima. 

A very powerful methodology, which does not 
suffer from the above limitations for regression and 

time-series problems, is the Nonparametric Nonlinear 
Support Vector Machine (NLSVM) model (Vapnik, 
2000). It implements Structural Risk Minimization 
(SRM) principle, which has been shown to be superior 
to the traditional Empirical Risk Minimization (ERM) 
principle implemented in ANN models. The most 
important concept of the SRM principle is to minimize 
the upper bound to the ‘Generalization error’ rather 
than minimizing the ‘Training error’ as in the ERM 
principle. NLSVM is equivalent to solving a linear 
constrained quadratic programming (QP) problem, 
and its solution is always unique and globally optimal. 
However, the main drawbacks of NLSVR are that 
the amount of computations becomes larger and the 
learning rate is greatly cut down with the increasing 
amount of data for training (Zhou and Ma, 2013). 
Recently, the Least Squares version of SVM, known 
as Least Squares Support Vector Machine (LSSVM) 
was proposed (Suykens et al. 2002) as a reformulation 
of standard NLSVM for solving nonlinear regression 
and time-series problems. A heartening aspect of 
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Nonlinear LSSVM as compared to standard NLSVM 
for regression problems is that it applies linear least 
squares criterion to the loss function with only equality 
type constraints to obtain a set of linear equations 
instead of the ε-insensitive loss function with inequality 
type constraints to form traditional convex QP problem. 
This leads to the advantages of fast convergence, high 
accuracy, and low computational effort.

It may be emphasized that only linear or only 
nonlinear models are not adequate for describing real-
world time-series. Accordingly, the hybrid methodology 
that involves both these types of modelling capabilities 
provides a robust method and a good alternative for 
forecasting time-series data. Several authors have 
developed hybrid methodologies by combining linear 
ARIMA/SARIMA models with Nonlinear ANN or 
NLSVM models (e.g., Zhang, 2003; Chen and Wang 
2007a; and Khashei and Bijari2011). Lama et al. (2022) 
modelled and forecasted rainfall data for hilly regions 
such as state of Sikkim and adjoining areas of West 
Bengal through SARIMA, exponential autoregressive, 
and non-parametric time delay neural network model. 
Gurung et al. (2017) combined two competing models 
to improve the forecasts of the volatility process. A 
new method of combining the volatility of these two 
competing models using the powerful technique of the 
Kalman filter was also developed. Ghosh et al. (2011) 
combined linear and nonlinear time-series models for 
cyclical data.

In this article, we have developed four hybrid 
models by combining Linear KF and Nonlinear LSSVM 
methodologies. Despite the superior features of these 
methodologies, their generalization and efficiency are 
sensitive to the values of hyper-parameters. Therefore, 
the selection of optimal hyper-parameters is an important 
step in Nonlinear LSSVM modelling. To this end, 
Grid-search is the most commonly employed method 
(Gestel et al., 2004). However, this approach is time-
consuming. Pai and Hong (2005) employed simulated 
annealing algorithms. However, the main drawback of 
this technique is that the rate of convergence is very 
slow. Further, Chen and Wang (2007b) discussed the 
advantages and disadvantages of various efficient 
estimation procedures and also proposed a Real-valued 
GA technique. However, GA is capable of finding the 
solution through evolution operators, such as crossover 
and mutation (Yang et al., 2011). Evolution is inductive. 
In reality, life does not always revolve around a good 

solution. Fortunately, a very efficient population-based 
stochastic optimization algorithm, viz. Particle Swarm 
Optimization (PSO) technique is capable of rectifying 
the above limitations (Parsopoulos and Vrahatis, 
2010). In contrast to GA, which exploits competitive 
characteristics of biological evolution, PSO simulates 
cooperative and social behavior such as fish schooling, 
bird flocking, or insect swarming. So, in this article, we 
have employed PSO for estimating hyper-parameters 
of various models. 

Organization of the present article is as follows. 
After a brief introduction, various models are discussed 
in Section 2. Section 3 deals with the description of 
the PSO algorithm and procedure for estimating hyper-
parameters of Nonlinear LSSVM and hybrid models. 
As an illustration, all-India monthly rainfall time-
series data are considered, and the entire data analysis 
is reported in Section 4. Finally, the conclusion is 
presented in Section 5. 

2.	 MATERIALS AND METHODS

2.1	 Linear Kalman Filter (KF) Model
State space modelling includes the State transition 

equation, i.e. Eq.(1), which allows the state variable 
tα  to change through time, and the measurement 

equation, i.e. Eq.(2), which relates the state variable to 
an observation :tY

1t t t t t+ = +F G ,α α ε � (1)
T

t t t tY ν= +H ,α � (2)
where superscript T indicates transpose. It is 

assumed that { }tε  in Eq.(1) and { }tν  in Eq.(2) are 
independent, zero mean, Gaussian white noise process 
with

and [ ] . T T
t t t t t tE R Eν ν  = =  ε ε Q � (3)

The Linear KF is a recursive algorithm for 
sequentially updating the state vector given past 
information tψ . Denote 

{ } { }1 1| and | 0 1 2t t t t t t t tE E tψ ψ− −= = = …α α α α| |ˆ  , ,ˆ , , �(4)

and assume { }0 1 0E− =|ˆ  α α  and 0 1 0− =| PΣ
. The state vector tα  and its mean squared error 

( )( )T
t t t t tE  = − − 

ˆ ˆΣ α α α α  are recursively estimated 
by:

( )1
1 1 1 1t t t t t t t t t t t t t t t tR X−

− − − −= + + −T T
| | | | |H ( H H ) H , ˆ ˆ ˆα α Σ Σ α

� (5)



123Mohan Kumar T.L. et al. / Journal of the Indian Society of Agricultural Statistics 76(3) 2022  121–130

1
1 1 1 1t t t t t t t t t t t t t t tR −

− − − −= − +T T
| | | | | H ( H H ) H . Σ Σ Σ Σ Σ � (6)

Using the recursive filter Eqs.(1), (5) and (6), we 
can obtain 1t t+ |α̂  as

1t t t t t+ =| |Fˆ ˆα α . � (7)
and

1t t t t t t t t t+ = +T T
| |F F G Q G . Σ Σ � (8)

Eq.(7) can also be written as

(
)

1
1| | 1 | 1 | 1

| 1

ˆ

,

ˆ ( )

ˆ
t t t t t t t t t t t t t t t

t t t

R Y−
+ − − −

−

= + +

−

α α Σ Σ

α

T

T

F F H H H

H � (9)
which implies that the time update rules for each 

forecast of state are weighted average of previous 
forecast 1t t −|α̂  and forecast error ( )1t t t tY −− T

|ˆ   H α . After 
obtaining 1t t −|α̂ , one may predict tY  by the optimal 
predictor | 1t̂ tY − , where

1 1t t t t tY − −= T
| | Hˆ α̂ � (10)

and the conditional error variance due to predictor 
| 1t̂ tY −  is

1t t t t tR− +T
|H HΣ � (11)

An excellent description of this methodology is 
given in Durbin and Koopman (2001).

2.2	 Nonlinear Least Squares Support Vector 
Machine (LSSVM) Model
Suppose training data set is 1

N
i i iD x y == { , } ,  where 

n
ix R∈ is the thi  input data, iy R∈  is the thi  target 

data and N  corresponds to size of training data. In the 
primal weight space, Nonlinear LSSVM function for 
regression is given by

( ) ( )Ty x w x bϕ= +  .� (12)

where ( ) hnnR Rϕ →. :  is a nonlinear function, 
which maps input space into a higher dimensional 
feature space, hnw R∈  is weight vector and b  is a bias 
term. Nonlinear LSSVM for regression formulation 
can be described as 

Objective function: 

( ) 2

1

1
2 2

N
T

p iw b e
i

min J w e w w eγ

=

= + ∑, ,
, � (13)

Subject to the constraint: 

( ) 1 2T
i i iy w x b e i Nϕ= + + = …,      , , , , � (14)

Where ie R∈  is error. Note that the cost function 
pJ  consists of regularization term and sum of squared 

fitting error in primal feature space. The relative 
importance of these two terms is determined by the 
positive real constant γ . In case of noisy data, one 
avoids over-fitting by taking a smaller γ  value. The 
weight vector w  can be infinite-dimensional, which 
makes calculation of w  impossible, in general. The 
Lagrangian function can be constructed as

( ) ( ) ( ){ }
1

N
T

p i i i i
i

L w b e J w e w x b e yα α ϕ
=

= − + + −∑, , : , ,

� (15)

where 1 2i i Nα = …, , , ,   are Lagrangian multipliers, 
also called support values. The Karush-Kuhn-Tucker 
(KKT) conditions for optimality are given by partially 
differentiating L:

( )

( )

1

1

0

0 0, 1, 2, ,    

0  ,   1, 2, ,

0 0 .

N

i i
i

N

i
i

i i
i

T
i i i

i

L w x
w

L i N
b
L e i N
e

L w x b e y

α ϕ

α

α γ

ϕ
α

=

=














∂
= → =

∂
∂

= → = = …
∂
∂

= → = = …
∂

∂
= → + + −


=

∂

∑

∑

� (16)

After eliminating w  and ie ,  optimization problem 
can be transferred into the following linear solution 
system in dual space:

1
0 1 0

11

T
v

v

Solve for b

b
I y

α

α
γ

−
 

    =    Ω +     

   , 

 
,
� (17)

where 

[ ] [ ]1 2 1 2[ , , , ] ,1 1,1, ,1 , , , ,T TT
N v Ny y y y α α α α= … = … = …  

and { }ijΩ = Ω  is given by

( ) ( ) ( ) 1 2T
ij i i i jx x k x x i Nϕ ϕΩ = = = … , , , , , , � (18)

where ( )i jk x x ,  is called the Inner-product kernel 
function. The value of the kernel equals the inner 
product of ( )ixϕ  and ( )jxϕ , which are produced 
by mapping two vectors ix  and jx  into the higher 
dimensional feature space i.e. ( ) ( ) ( )i j i jK x x x xϕ ϕ=, .  . 
Furthermore, the computation of ( ) ( )i jx xϕ ϕ.  in the 
higher dimensional feature space may be too complex 
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to perform. An advantage of Nonlinear LSSVM is that 
the nonlinear function ( )ixϕ  is need not to be used. 
The computation in input space can be performed 
using a kernel function to yield inner products in 
higher dimensional feature space, avoiding having to 
perform a mapping ( )ixϕ . Thus, Nonlinear LSSVM 
for regression is obtained as

( ) ( ) ( )
1

N
T

i i j
i

y x w x b k x x bϕ α
=

= + = +∑ , , � (19)

Where iα  and b  are solutions of the linear system. 
For univariate time-series forecasting problem, 

dimension of input vectors are the past lagged 
observations. Nonlinear LSSVM model in fact performs 
a nonlinear functional mapping from past observations 
to future value. 

( )1 2t t t t p ty f y y y ω− − −= … +, , , , � (20)
where ty  is output value, p  is the dimension of 

input vectors (i.e. number of lagged observations) 
and tω  is error term. However, in practice, the choice 
of dimension of input vectors (i.e. number of lagged 
observations) is difficult; often trial and error method 
is conducted. Therefore, we have employed PSO for 
optimizing time lag p  and model hyper-parameters.

2.3	 Hybrid Models
A time-series data is considered as comprising 

linear and nonlinear components. Then, the hybrid 
model ( )tY  is also composed of these components and 
can be represented as: 

t t tY L N= + , � (21)
Where tL  and tN  respectively denote the linear 

and nonlinear components to be estimated respectively 
from linear and nonlinear models. tL̂  is first estimated 
using fitted linear KF model. Then, the residual at time 
t, i.e. tε  contains only nonlinear pattern:

t t tY Lε = − ˆ . . � (22)
In this article, we propose the four various hybrid 

models:
Model 1: LKF-NLSSVM1
This model is given by 

( )1 12t t t t p tfε ε ε ε ω− − −= … +, , . , � (23)

Where tε  is tht  residual obtained from Linear KF 
model, tω  is random term and ( )f .  is the nonlinear 

function determined by Nonlinear LSSVM. Therefore, 
the combined forecast is

t t tY L N= + ,ˆ ˆ ˆ � (24)

where tN̂  is the forecast value of nonlinear 
component obtained from fitting Eq.(23).

Model 2: LKF-NLSSVM2
This model is expressed as

( )1 2 1t t t t p t tY f Y Y Y ε ω− − − −= … +, , , , . � (25)
Model 3: LKF-NLSSVM 3
This model is given by

( )1 2t t t t p t tY f Y Y Y L ω− − −= … +, ˆ, , , . � (26)
Model 4: LKF-NLSSVM 4
This model is expressed as

( )1t t t tY f L ε ω−= +,ˆ . � (27)

2.4	 Estimation of Optimal Hyper-Parameters 
through PSO Algorithm 

Several kernel functions ( )i jk x x,  are available 
in the literature, like Polynomial function, Gaussian 
kernel, and Radial-basis function (RBF). In this 
article, most commonly used RBF kernel function 

( ) ( )2 22i j ik x x exp x x σ= − −, { /  for nonlinear regression 
is adopted to train Nonlinear LSSVM model. It 
has only one hyper-parameter that needs to be pre-
determined and yields good performance under general 
conditions for nonlinear time-series forecasting. 
Training Nonlinear LSSVM with RBF kernel function 
is required to be optimized through two hyper-
parameters, viz. (i) Regularization parameter γ , which 
balances the complexity and approximation accuracy 
of the model, and (ii) Kernel bandwidth parameter σ , 
which represents the variance of RBF kernel function. 
To this end, PSO is employed to optimize these hyper-
parameters (Parsopoulos and Vrahatis, 2010).

The PSO, proposed by Kennedy and Eberhart in 
1995, is a population-based stochastic optimization 
search method. The population is called the ‘swarm’ 
and its individuals are called the ‘particles’. PSO 
algorithm investigates solution space using a set of 
particles vector that are updated from iteration to 
iteration. Let nA R⊂  be search space and A Y R→ ⊆  
be objective function, then swarm is defined as a 
set { }1 2 MS X X X= …, , ,  of M particles (candidate 
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solution), where M is a user-defined parameter of the 
algorithm. Then thi  particle of dimension d  is defined 
as 1 2 ( , , , ) , 1, 2,T

i i i idX X X X i M= … = … . Each particle 
is a potential solution to a problem, characterized by 
three quantities: its velocity 1 2( ) ( , , , ) ,T

i i i idV V V V= …  its 
current position 1 2( ) ( , , , )T

i i i idX X X X= …  and personal 
best position 1 2( ) ( , , , )T

i i i idpbest pbest pbest pbest= …  . 
Let t  denotes current iteration and gbest  denotes 
its global best position achieved so far by any of its 
particles. Initially, swarm is randomly dispersed within 
search space, and random velocity is assigned to each 
particle. Particles interact with one another by sharing 
information to discover optimal solution. Each particle 
moves in the direction of its personal best position 
( )pbest  and its global best position ( )gbest . To search 
optimal solution, each particle changes its velocity 
according to the cognitive and social parts given by 

( ) ( ) ( ) ( ) ( )
( ) ( )
1 1

2 2

1ij ij ij ij

j ij

V t w t V t c R pbest t X t

c R gbest t X t

 + = + − + 
 − 

 

, �(28)

where 1 2i M= …, ,  and 1 2j d= …, , . However, in 
case of swarm explosion effect, corresponding velocity 
component is restricted to following closest velocity 
bound:

( ) ( )
( )

,          1
1

 ,        . 1
max ij max

ij
max ij max

V if V t V
V t

V if V t V
− + < −+ =  + > � (29)

After updating its velocity, each particle moves 
to a new potential solution by updating its position as 
follows:

( )
( )

( ) ( ) ( )
( )

,                                 1
1 1 ,     1

 ,     1   ; 1, 2, ; 1, 2, .

min ij min

ij ij ij min ij max

max ij max

X if X t X
X t X t V t if X X t X

X if X t X i M j d
β

 + <
+ = + + ≤ + ≤
 + > = … = …

� (30)
In Eqs.(28) and (30), ,  ij ijV X  and ijpbest  are 

respectively velocity, position and personal best 
position of particle i  on the thj  dimension and jgbest  
is the 

thj  dimension gbest  position among all particles 
at iteration   t . 1  R  and 2R  are random values, which 
are mutually independent and uniformly distributed 
over [0, 1], β  is a constraint factor used to control 
velocity weight, whose value is usually set equal to 
1. Positive constants 1c  and 2c  are usually called the 
“acceleration factors”. Factor 1c  is sometimes referred 
to as “cognitive” parameter, while 1 c is referred to as 
“social” parameter. Inertia weight at iteration t is ( )w t  

and is used to balance global exploration and local 
exploitation. This can be determined by:

( )
( )up low

up
max

w w t
w t w

T
−

= − � (31)

where t is current iteration number, upw  and loww  
are desirable lower and upper limits of w  and maxT  is 
maximum number of iterations.

Process of optimizing hyper-parameters of 
Nonlinear LSSVM model by PSO is described in 
following steps:

Step 1: Read of Data and Initialization and PSO 
parameter setting

When handling time-series data, it is important 
to realize that the entries are inherently indexed on 
time. This is crucial as mixing of data (as in k-fold 
cross-validation) may lead to completely different 
realizations of the underlying phenomenon. The 
validation technique respecting time-series order can be 
adopted. Here, training data is divided into two subsets, 
viz. (i) training set, which is used for actual training 
of the model, and (ii) validation set, which is used to 
guide the search (tuning) for optimal hyper-parameter 
values. Once these are found, machine’s generalization 
performance can be evaluated on a test set. 

Nonlinear LS-SVM model hyper-parameters, 
viz. Regularization parameter γ , Kernel bandwidth 
parameter σ  are directly coded with real values within 
a given search space to randomly generate M number 
of initial particles of swarm set S. Search space of 
hyper-parameters γ  and σ  are respectively restricted 
to ranges of [ ],min maxγ γ , [ ],min maxγ γ  and [ ],min maxσ σ . 
Also randomly generate initial particles velocity ( )ijV  
restricted to the range of [ ] ,max maxV V− .

Step 2: Fitness function
The fitness of training data set is easy to calculate, 

but is prone to over-fitting. In this article, validation 
technique is adopted to guide (tune) the search of 
optimal hyper-parameter values by PSO. In this way, 
given a specific particle, whose current position ( iX ) 
defines a set of hyper-parameters { , }γ σ  along with the 
training and validation sets at hand are used to build the 
model. In validation technique, first Nonlinear LSSVM 
function is built for the set of hyper-parameters { , }γ σ  
considering the training set. Thus, the trained model 
is used to predict outputs from input values of the 
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validation set. The performance of trained model is 
assessed by Root Mean Square Error (RMSE) criterion, 
which gives an estimate of the expected generalization 
error for training data set and is given by:

{ } ( )
1/2

21

1

,ˆ,ó
l

t t
t

RMSE l y yγ −

=

  
= −  

  
∑ � (32)

where ty  and ˆty  are respectively actual and 
predicted values, and l  is number of samples in 
validation set. At this step, the coupling between PSO 
and Nonlinear LSSVM takes place. 

Step 3: Train Nonlinear LS-SVM model and 
evaluate fitness value:

For each set of hyper-parameters { } ,γ σ  of initial 
particles, train Nonlinear LSSVM model. Evaluate 
fitness value defined by RMSE in Eq.(32) on validation 
set. The fitness evaluation phase entails the update of 
particles’ personal best position ( )pbest . If a particle’s 
current position  iX  results in a smaller RMSE, then 
its best position becomes iX  and the calculated fitness 
value is stored. Then, set the personal best position 
( )pbest  achieved so far by each particle. After fitness 
evaluation of all particles takes place, set the global best 
position gbest  achieved so far by any of its particles 
according to fitness value. 

Step 4: Update of Particles’ velocities and Positions

Now set the iteration number ( ) t  from one to 
maximum number of iterations and update initial 
weight ( )w t  generation by generation according to 
Eq.(31). Compute and update velocity of each particle 
using Eq. (28). Additionally, velocities are bounded 
to the definition ranges of variables using Eq. (29) to 
avoid particles going too far from the feasible search 
space. Then compute and update position of each 
particle using Eq. (30) subject to constraints in Eq. (30) 
for each hyper-parameter to restrict particle positions to 
within a search space range. After updating velocity and 
position of each particle, find and update the personal 
best position ( )pbest  achieved so far by each particle 
and global best position ( )gbest  achieved so far by any 
of its particles according to minimum fitness value.

Step 5: Termination
Repeat search process from steps 2 to 4 until 

stop conditions, such as maximum iteration, are met. 
Finally, optimal hyper-parameters are utilized to 
build Nonlinear LSSVM model on training data set 

and testing data set are used to validate prediction 
performance of the trained model. To perform the above 
tasks, LS-SVMLab, Version 1.8 toolbox, developed by 
De Brabanter et al. (2011) for MATLAB platform, is 
employed. Relevant Computer program for estimating 
optimal hyper-parameters of Nonlinear LS-SVM model 
by PSO is developed in MATLAB 2012a function (m 
file) and the same is appended as ANNEXURE-I.

3.	 RESULTS AND DISCUSSION
As an illustration, all-India monthly rainfall (in 

mm) time-series data for the period January 1991 to 
December 2011, obtained from the website (www.
tropmet.res.in) of the Indian Institute of Tropical 
Meteorology, Pune, India are considered. The data 
points for the period January 1991 to December 2010 
are used as training data set and remaining data points 
for the period January 2011 to December 2011 are used 
as testing data set. 

First, Linear KF is employed to recursively estimate 
linear component. The particular form of measurement 
equation and state transition equation are employed, 
which are respectively given by T

t t t tY Nµ= + + Hˆ α  
and t t t t= +F Kα α , where ( )0tN R~ ,  and ( )0t QK ~ , , 

( )1 13 01  0 0 0T
t ×

= …H  and

 

1 2 3 12

13 13

, 

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

t

µ α α α α

×

… 
 …
 = … 
  … 
     

F

which is computed as

ˆ .

0 0 0 0 0 0 0 0

0

0 0 0 0 0
87.35 0 0.31 0.17 0.36 0.76 0.81 0.11 0.39 0.91 0.81 0.19 0.22 0.

0 0 0 0 0 0 0 0 0 0 0

0
67

0 1 0 0 0 0

1

0 0 0 0 0 0t

 
 
 =  
  
 

            

F

The computed value of andR Qµ , , ˆˆˆ  are respectively 
given by 87.31, 1098.7 and 897.6. Then these values 
are used to compute the linear component estimated 
and generate residuals. Fitted values of Linear KF 
and its residuals are used to develop the four hybrid 
models. Nonlinear LSSVM and hybrid models with 
RBF kernel function were trained using LSSVMLab 
toolbox in MATLAB software package. Note that, 
before training Nonlinear LSSVM and hybrid models, 
each data point is normalized to zero mean and unit 
variance so as to improve generalization power of these 
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models. In the training phase, first training data consists 
of 20 years data points corresponding to the period 
January 1991 to December 2010 are divided into two 
subsets viz. i) training set (data points corresponding 
to the period January 1991 to December 2008), which 
are used for training Nonlinear and hybrid models, and 
ii) validation set (24 data points corresponding to the 
period January 2008 to December 2010), which are 
used for tuning optimal hyper-parameters. Next, PSO 
algorithm is employed to estimate hyper-parameters 
{ }γ σ  , ,and time-lag of Nonlinear LSSVM and hybrid 
models. Through initial experiment, the parameters of 
PSO technique for Nonlinear LSSVM model are set 
as follows: 100 initial particles, so that it is enough 
to cover the search space within the limited iterations 
based on experimental runs, 300 maximum iterations, 
inertia weight is initially set as 0.9 and reduced to 0.1 
linearly according to Equation (31) and c1=c2=2.05. 
The searching range of Nonlinear LSSVM and hybrid 
models hyper-parameters γ and σ were respectively 
set in the range [0.001, 100] and [0.001,10] and their 
velocity bounds were respectively set to be in the 
range [-49.99, 49.99] and [-4.99,4.99], time-lag of 
above models are restricted to 1 to 12 maximum lags. 
Nonlinear LSSVM and hybrid models are trained 
using PSO to evaluate fitness value defined by RMSE  
in Equation (32) on validation set. The set of hyper-
parameters and time-lag having the minimum RMSE  
are selected as the optimal hyper-parameters and time-
lag. The values obtained are reported in Table 1.
Table 1. Optimal hyper-parameters estimated by PSO techniques 

for various models

Models γ σ p RMSE

Nonlinear LSSVM 9.61 0.91 5 19.53

LKF-NLSSVM1 17.81 5.76 8 36.80

LKF-NLSSVM2 7.47 1.35 8 19.26

LKF-NLSSVM3 36.21 0.71 6 19.23

LKF-NLSSVM4 1.37 0.82 - 49.02

These optimal hyper-parameters and time lag 
values were utilized to build Nonlinear LSSVM 
and hybrid models on whole training data set and 
forecasting accuracy of these models was examined 

using testing data. Further, prediction performances of 
the hybrid models were compared along with Linear 
KF and Nonlinear LSSVM models on the basis of 
Root Mean Square Error (RMSE) and Mean Absolute 
Percent Error (MAPE) criteria, given respectively as

( )2

1

,ˆ1 n

t t
t

RMSE y y
n =

= −∑ � (33)
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t t

t 1 t
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where ty  is actual value, ˆty  is predicted value, and 
n is number of observations. RMSE and MAPE values 
for fitted models were computed on training dataset and 
are reported in Table 2.

It may be noted from Table 2 that LKF-NLSSVM3 
model has performed the best followed by LKF-
NLSSVM2 model.

 

Fig. 1. Fitted LKF-NLSSVM3 model along with training data points

Further, one-step ahead forecasts along with actual 
values during the period January 2011 to December 
2011 for all the six models were computed and are 
reported in Table 3. The RMSE and MAPE values 
were also computed for the above models on the testing 
dataset, and the results are reported in Table 3. On test 
data also, a perusal indicates that LKF-NLSSVM3 
model has performed the best followed by LKF-
NLSSVM2 model. To get a visual insight, fitted LKF-
NLSSVM3 model along with data are exhibited in 
Fig. 1. Evidently, the fit is seen to be extremely good.

To sum up, hybrid model, viz. LKF-NLSSVM3 
using PSO is found to be best for both training as well 
as testing data. 

Table 2. Comparison of forecasting performance of various models on training dataset

Models
Criteria

Linear KF Nonlinear LSSVM LKF-NLSSVM1 LKF-NLSSVM2 LKF-NLSSVM3 LKF-NLSSVM4

RMSE 50.75 22.58 24.46 17.30 15.47 41.35

MAPE 158.90 46.12 49.11 38.17 28.74 104.48
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4.	 CONCLUSION
In this article, linear KF and nonlinear LSSVM 

methodologies are described. Also, hybrid models are 
developed by combining these models. Further, PSO 
technique, which avoids over-fitting or under-fitting, 
is employed to optimize the hyper-parameters. As 
an illustration, all-India monthly rainfall time-series 
data are considered. It is found that hybrid models 
achieved greater accuracy than linear KF and nonlinear 
LSSVM models. Specifically, LKF-NLSSVM3 model 
performed best among the six models for data under 
consideration. Hence, in order to exploit the advantages 
of these kind of hybrid models developed using linear 
KF and nonlinear LSSVM model could be applied 
to other various data sets generated in agriculture for 
forecasting namely, forecasting of price of agriculture 
commodity, forecasting of production data, forecasting 
import and export of agricultural commodities, 
forecasting regional weather data, etc…
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ANNEXURE-1
MATLAB PROGRAM FOR ESTIMATING 

OPTIMAL HYPER-PARAMETERS OF THE 
NONLINEAR LS-SVM MODEL USING 
PSO ALGORITHM FOR TIME-SERIES 
FORECASTING PROBLEM

function [Bestgam, Bestsig, ValRMSE,fittness_
iter] = PSOLSSVMforTS(Xtr,Ytr,Xval,Yval, 
gamma,sigma,population,cvalue,max_iteration)

%% Syntex
%>> [Bestgam, Bestsig, ValMSE,fittness_

iter]=PSOLSSVMforTS(Xtr,Ytr,Xval,Yval, 
gamma,sigma,population,cvalue,max_iteration);

%% Output: 
% Bestgam:Scalar value of Optimal regularization 

parameter (gamma) value
% Bestsig2 :Scalar value of Optimal kernel 

parameter (sigma) value
% ValRMSE:Estimated cost of the optimal 

hyperparameters
% fittness_iter : Estimated cost over itteration in 

PSO process
%% Inputs:
% Xtr : M x d matrix of input training data 
% Ytr : M x 1 vector of outputs training data 
% Xval : N-M*d Matrix of input validation data
% Yval : N-M*1 vector of output validation data
% gamma : 1 x 2 vector of hepreparametergama 

range default [0.001,100] 
% sigma : 1 x 2 vector of hepreparameter sigma 

range default [0.001 100] 
% Population : Size of poluation (swarm) scalar or 

number of particles default 100
% Cvalue : 1 x 2 vector of c1 and c2 value default 

c1=2.05; c2=2.05;
% max_iteration : maximum number of iterations 

default 200 
%%

%default values
ifnargin==1; 

gamma=[0.001,100]; %default value of gamma 
range

sig=[0.001, 100]; %default value of sigma range
max_iter=200; %default value of Maximum 

iteration
pop=100; %default value of population (swarm) 

or number of particles
part_dim=2; % default value ofparticles or 

dimension of particles
 c1=2.05; c2=2.05; %default value of acceleration 

constant 
else
gamma=gamma;
sig=sigma;
pop=population;
part_dim=2;
 c1=cvalue(1); c2=cvalue(2);
max_iter=max_iteration;
end

%bound on velocity
Vgammax=(gamma(2)-gamma(1))/2; %velocity 

maximum bound on gamma
Vgammin=-Vgammax; %velocity minimum 

bound on gamma
Vsigmax=(sig(2)-sig(1))/2; %velocity maximum 

bound on sigma
Vsigmin=-Vsigmax; %velocity minimum bound 

on sigma

% preallocation of particle posistion, velcity, pbest 
and fitness 

 X=zeros(pop,part_dim); %preallocation of X 
particle position

 V=zeros(pop,part_dim); %preallocation of 
velocity

Pbest_position=zeros(pop,part_dim); 
%preallocation of personal best position

fitness=zeros(pop,1); % prealloation of global 
fitness function (MSE)value

% initialize particle position and velocity and 
evaluate initial fitness

fori=1:pop
X(i,1)=gamma(1)+(gamma(2)-

gamma(1))*rand(1);
X(i,2) = sig(1)+(sig(2)-sig(1))*rand(1);
V(i,1)=Vgammin+(Vgammax-

Vgammin)*rand(1);
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V(i,2) = Vsigmin+(Vsigmax-Vsigmin)*rand(1);
 %gamma and sig2 value for LSSVM model
gam=X(i,1); sig2=X(i,2);
 % training model to estimate fitness value of 

fitness function MAPE
 [alpha,b] = 

trainlssvm({Xtr,Ytr,’f’,gam,sig2,’RBF_
kernel’,’preprocess’});

predicted = simlssvm({Xtr,Ytr,’f’,gam,sig2,’RBF_
kernel’,’preprocess’},{alpha,b},Xval); 

 RMSE=sqrt(mean((Yval-predicted).^2));
fitness(i,1)=RMSE;
end

% particles global fitness and its index value
[Gbest_fit, gbestfitindex]=min(fitness);
Gbest_position=X(gbestfitindex,:);% particles 

globalbest position
Pbest_position=X; %particle personal best 

position
Pbest_fit=fitness; %particle personal best fitness

fittness_iter=zeros(max_iter,1);
%update particle velocity position 
for t=1:max_iter %t is iteration number
fori=1:pop
w_up=0.9; w_low=0.1;
 w=w_up-((w_up-w_low)*t)/max_iter;
 %update particle velocity
 V(i,:)=w*V(i,:)+c1*rand*(Pbest_position(i,:)-

X(i,:))+c2*rand*(Gbest_position-X(i,:));

% constrained to velocity upper and lower bound 
on parameter gamma

if V(i,1)>Vgammax
V(i,1)= Vgammax;
elseif V(i,1)<Vgammin;
V(i,1)= Vgammin;
end

% constrained to particle velocity upper and lower 
bound on parameter sigma

if V(i,2)>Vsigmax
V(i,2)= Vsigmax;
elseif V(i,2)<Vsigmin;
V(i,2)= Vsigmin;
end

%update particle current position

X(i,:)=X(i,:)+V(i,:);

% constrained to particle current position upper 
and lower bound on parameter gamma

if X(i,1)>gamma(2)
X(i,1)=gamma(2);
elseif X(i,1)<gamma(1)
X(i,1)=gamma(1);
end

% constrained to particle current position upper 
and lower bound on parameter sigma

if X(i,2)>sig(2)
X(i,2)=sig(2);
elseif X(i,2)<sig(1)
X(i,2)=sig(1);
end

% evaluation of fitness function for update 
particles 

gam=X(i,1); sig2=X(i,2);
 [alpha,b] = 

trainlssvm({Xtr,Ytr,’f’,gam,sig2,’RBF_
kernel’,’preprocess’});

predicted = simlssvm({Xtr,Ytr,’f’,gam,sig2,’RBF_
kernel’,’preprocess’},{alpha,b},Xval); 

 RMSE=sqrt(mean((Yval-predicted).^2));
fitness(i,1)=RMSE;
end

% update particles fitness
[current_gbest_fit, current_index]=min(fitness);
current_pbest_fit=fitness;

% update global best fitness and position of 
particles 

ifcurrent_gbest_fit<= Gbest_fit
Gbest_fit=current_gbest_fit;
Gbest_position=X(current_index,:);
end

% update personal best fitness and position of 
particles

Pbest_index=find(current_pbest_fit<=Pbest_fit);
Pbest_position(Pbest_index,:)=X(Pbest_index,:);
Pbest_fit(Pbest_index)=current_pbest_fit(Pbest_

index);
fittness_iter(t,1)=Gbest_fit; 
end
Bestgam=Gbest_position(1);
Bestsig=Gbest_position(2);
ValRMSE=Gbest_fit;
fittness_iter=fittness_iter;
end


